1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310
| # coding: utf-8
__version__ = '1.1.0' __author__ = 'Zhu Jianqi (heloowird@gmail.com)'
''' 以关键词收集新浪微博 ''' import requests import wx import csv import codecs import sys import urllib import urllib2 import re import json import hashlib import os import time import datetime import random from lxml import etree import logging import gzip from StringIO import StringIO
class CollectData(): """数据收集类 利用微博高级搜索功能,按关键字搜集一定时间范围内的微博。
大体思路:构造URL,爬取网页,然后解析网页中的微博ID。后续利用微博API进行数据入库。本程序只负责收集微博的ID。
登陆新浪微博,进入高级搜索,输入关键字”空气污染“,选择”实时“,时间为”2013-07-02-2:2013-07-09-2“,地区为”北京“,之后发送请求会发现地址栏变为如下: http://s.weibo.com/wb/%25E7%25A9%25BA%25E6%25B0%2594%25E6%25B1%25A1%25E6%259F%2593&xsort=time®ion=custom:11:1000×cope=custom:2013-07-02-2:2013-07-09-2&Refer=g
是不是很长,其实很简单。 固定地址部分:http://s.weibo.com/wb/ 关键字二次UTF-8编码:%25E7%25A9%25BA%25E6%25B0%2594%25E6%25B1%25A1%25E6%259F%2593 排序为“实时”:xsort=time 搜索地区:region=custom:11:1000 搜索时间范围:timescope=custom:2013-07-02-2:2013-07-09-2 可忽略项:Refer=g 显示类似微博:nodup=1 注:这个选项可多收集微博,建议加上。默认不加此参数,省略了部分相似微博。 某次请求的页数:page=1
另外,高级搜索最多返回50页微博,那么时间间隔设置最小为宜。所以该类设置为搜集一定时间段内最多50页微博。 """ def __init__(self, keyword, startTime, savedir, interval='50', flag=True, begin_url_per = "http://s.weibo.com/weibo/"): self.begin_url_per = begin_url_per #设置固定地址部分,默认为"http://s.weibo.com/weibo/",或者"http://s.weibo.com/wb/" self.setKeyword(keyword) #设置关键字 self.setStartTimescope(startTime) #设置搜索的开始时间 # self.setRegion(region) #设置搜索区域 self.setSave_dir(savedir) #设置结果的存储目录 self.setInterval(interval) #设置邻近网页请求之间的基础时间间隔(注意:过于频繁会被认为是机器人) self.setFlag(flag) #设置 self.logger = logging.getLogger('main.CollectData') #初始化日志
##设置关键字 ##关键字需解码 def setKeyword(self, keyword): #self.keyword = keyword.decode('GBK').encode("utf-8") self.keyword = keyword print 'twice encode:',self.getKeyWord()
##设置起始范围,间隔为1小时 ##格式为:yyyy-mm-dd-HH def setStartTimescope(self, startTime): if not (startTime == '-'): self.timescope = startTime + ":" + startTime else: self.timescope = '-'
# ##设置搜索地区 # def setRegion(self, region): # self.region = region
##设置结果的存储目录 def setSave_dir(self, save_dir): self.save_dir = save_dir if not os.path.exists(self.save_dir): os.mkdir(self.save_dir)
##设置邻近网页请求之间的基础时间间隔 def setInterval(self, interval): self.interval = int(interval)
##设置是否被认为机器人的标志。若为False,需要进入页面,手动输入验证码 def setFlag(self, flag): self.flag = flag
##构建URL def getURL(self): return self.begin_url_per+self.getKeyWord()+"&typeall=1&suball=1"+"×cope=custom:"+self.timescope+"&page="
##关键字需要进行两次urlencode def getKeyWord(self): once = urllib.urlencode({"kw":self.keyword})[3:] return urllib.urlencode({"kw":once})[3:]
##爬取一次请求中的所有网页,最多返回50页 def download(self, url, maxTryNum=4): csvFile = open(self.save_dir + os.sep + "weibo_kanbing.csv", "ab") #向结果文件中写微博ID csvFile.write(codecs.BOM_UTF8) content = csv.writer(csvFile, dialect='excel') headers = {'User-Agent': 'Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/56.0.2924.87 Safari/537.36'} cookie = {'SINAGLOBAL':'3726160468139.8677.1489128973894', 'un':'18621677460', 'wvr':'6', 'SWB':'usrmdinst_12', 'SCF':'At4nsWXnBTiLQgwnhEdGW1ipfDRoyBYdEIpm4KN7_ZN3C0BxRlQeyX0sHoQOK6bDqLR6HeBBiwo6wRFXfObIvnc.', 'SUB':'_2A251wx_bDeRxGeNP7FIR9yjFwzyIHXVWuXYTrDV8PUNbmtBeLRjVkW8ia3o1WnWjknWq3t_Uh0UkKzBqsg..', 'SUBP':'0033WrSXqPxfM725Ws9jqgMF55529P9D9Wh_ODAX.pd3QJ6U3yvqGKET5JpX5KMhUgL.Fo-pS057S0q41h52dJLoIEUBBEXLxKqL1hnL1KnLxK-LBKeLB-zLxK-L1K5L1K2LxK-L12qLBoet', 'SUHB':'0vJ4Ss25HO1Ohu', 'ALF':'1521001227', 'SSOLoginState':'1489465228', '_s_tentry':'login.sina.com.cn', 'Apache':'7301168373695.357.1489465207066', 'ULV':'1489465207130:8:8:5:7301168373695.357.1489465207066:1489412710557', 'UOR':',,login.sina.com.cn', 'WBStorage':'02e13baf68409715|undefined'}
hasMore = True #某次请求可能少于50页,设置标记,判断是否还有下一页 isCaught = False #某次请求被认为是机器人,设置标记,判断是否被抓住。抓住后,需要复制log中的文件,进入页面,输入验证码 filter = set([]) #过滤重复的微博ID
i = 1 #记录本次请求所返回的页数 while hasMore and i < 51 and (not isCaught): #最多返回50页,对每页进行解析,并写入结果文件 source_url = url + str(i) #构建某页的URL data = '' #存储该页的网页数据 goon = True #网络中断标记
##网络不好的情况,试着尝试请求三次 for tryNum in range(maxTryNum): try: # set header http://stackoverflow.com/questions/385262/how-do-i-send-a-custom-header-with-urllib2-in-a-http-request # see this http://stackoverflow.com/questions/1653591/python-urllib2-response-header , so you can see 'gzip' in response header with urllib2.urlopen(URL).info() # and this http://stackoverflow.com/questions/3947120/does-python-urllib2-automatically-uncompress-gzip-data-fetched-from-webpage teach you how to decode gzip # #r = requests.get(source_url, cookies=cookie, headers=headers, timeout=12) send_headers = { "Accept":"text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,*/*;q=0.8", "Accept-Encoding":"gzip, deflate, sdch", "Accept-Language":"zh-CN,zh;q=0.8,en;q=0.6", "Cache-Control":"no-cache", "Connection":"keep-alive", #"Cookie":"cookies here" "Host":"s.weibo.com", "Pragma":"no-cache", "Referer":"http://s.weibo.com/", "Upgrade-Insecure-Requests":"1", "User-Agent":"Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/55.0.2883.87 Safari/537.36" } req = urllib2.Request(source_url , headers=send_headers) r = urllib2.urlopen(req) if r.info().get('Content-Encoding') == 'gzip': buf = StringIO(r.read()) f = gzip.GzipFile(fileobj=buf) html = f.read() else: html = r.read() data = html #print data break except: if tryNum < (maxTryNum-1): time.sleep(10) else: print 'Internet Connect Error!' self.logger.error('Internet Connect Error!') self.logger.info('filePath: ' + self.save_dir) self.logger.info('url: ' + source_url) self.logger.info('fileNum: ' + str(fileNum)) self.logger.info('page: ' + str(i)) self.flag = False goon = False break if goon: lines = data.splitlines() isCaught = True for line in lines: ## 判断是否有微博内容,出现这一行,则说明没有被认为是机器人 if line.startswith('<script>STK && STK.pageletM && STK.pageletM.view({"pid":"pl_weibo_direct"'): isCaught = False n = line.find('html":"') if n > 0: j = line[n + 7: -12].encode("utf-8").decode('unicode_escape').encode("utf-8").replace("\\", "").decode('utf-8') ## 没有更多结果页面 if (j.find('<div class="search_noresult">') > 0): hasMore = False ## 有结果的页面 else: page = etree.HTML(j) comment_box = page.xpath("//div[@action-type=\"feed_list_item\"]") for each_comment in comment_box: comment_time = each_comment.xpath(".//div[@class=\"feed_from W_textb\"]/a/@title") comment_text_list = each_comment.xpath(".//p[@class='comment_txt']") comment_text = [] for eachtext in comment_text_list: comment_text = 'r'.join(eachtext.xpath(".//text()")) comment_text = comment_text.replace(' ','').replace('\n', '').replace('\r', ' ') comment_text = comment_text.encode('utf8') if (comment_text != 'None' and comment_text not in filter): filter.add(comment_text) content.writerow([comment_time[0], comment_text]) # weibo = page.xpath("//div[@class=\"feed_from W_textb\"]) # for weibo_time, weibo_content in weibo: # weibo_time = weibo_time.xpath("./[@class=\"feed_from W_textb\"]/a/@title") # concept = 'r'.join(weibo_content.xpath("./text()")) # concept = concept.replace(' ','').replace('\n','').replace('\r',' ') # concept = concept.encode('utf8') # if (concept != 'None' and concept not in filter): # filter.add(concept) # content.writerow([weibo_time, concept])
# dls_id = page.xpath("//div[@class=\"feed_from W_textb\"]/a/@title") # for dl_id in dls_id: # # mid = str(dl_id.attrib.get('nick-name')) # dl_id = dl_id.encode('utf8') # if (dl_id != 'None' and dl_id not in mid_filter): # mid_filter.add(dl_id) # content.writerow([dl_id]) # # dls_text = page.xpath("//p[@class='comment_txt']") # for dl_text in dls_text: # concept = 'r'.join(dl_text.xpath("./text()")) # concept = concept.replace(' ','').replace('\n','').replace('\r',' ') # concept = concept.encode('utf8') # if (concept != 'None' and concept not in mid_filter): # mid_filter.add(concept) # content.writerow([concept]) # content.writerow('\n') # if (concept != 'None' and concept not in mid_filter): # mid_filter.add(concept) # content.write(concept) # content.write('\n') # print concept # print "----------------------" break lines = None ## 处理被认为是机器人的情况 if isCaught: print 'Be Caught!' self.logger.error('Be Caught Error!') self.logger.info('filePath: ' + self.save_dir) self.logger.info('url: ' + source_url) self.logger.info('fileNum: ' + str(fileNum)) self.logger.info('page:' + str(i)) data = None self.flag = False break ## 没有更多结果,结束该次请求,跳到下一个请求 if not hasMore: print 'No More Results!' if i == 1: time.sleep(random.randint(55,75)) else: time.sleep(15) data = None break i += 1 ## 设置两个邻近URL请求之间的随机休眠时间,防止Be Caught。目前没有模拟登陆 # sleeptime_one = random.randint(self.interval-30,self.interval-10) # sleeptime_two = random.randint(self.interval+10,self.interval+30) # if i%2 == 0: # sleeptime = sleeptime_two # else: # sleeptime = sleeptime_one # print 'sleeping ' + str(sleeptime) + ' seconds...' # time.sleep(sleeptime) else: break csvFile.close() csvFile = None
##改变搜索的时间范围,有利于获取最多的数据 def getTimescope(self, perTimescope, hours): if not (perTimescope=='-'): times_list = perTimescope.split(':') start_datetime = datetime.datetime.fromtimestamp(time.mktime(time.strptime(times_list[-1],"%Y-%m-%d-%H"))) start_new_datetime = start_datetime + datetime.timedelta(seconds = 3600) end_new_datetime = start_new_datetime + datetime.timedelta(seconds = 3600*(hours-1)) start_str = start_new_datetime.strftime("%Y-%m-%d-%H") end_str = end_new_datetime.strftime("%Y-%m-%d-%H") return start_str + ":" + end_str else: return '-'
def main(): logger = logging.getLogger('main') logFile = './collect.log' logger.setLevel(logging.DEBUG) filehandler = logging.FileHandler(logFile) formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s: %(message)s') filehandler.setFormatter(formatter) logger.addHandler(filehandler)
while True: ## 接受键盘输入 keyword = raw_input('Enter the keyword(type \'quit\' to exit ):') if keyword == 'quit': sys.exit() startTime = raw_input('Enter the start time(Format:YYYY-mm-dd-HH):') # region = raw_input('Enter the region([BJ]11:1000,[SH]31:1000,[GZ]44:1,[CD]51:1):') savedir = raw_input('Enter the save directory(Like C://data//):') interval = raw_input('Enter the time interval( >30 and deafult:50):')
##实例化收集类,收集指定关键字和起始时间的微博 cd = CollectData(keyword, startTime, savedir, interval) while cd.flag: print cd.timescope logger.info(cd.timescope) url = cd.getURL() cd.download(url) cd.timescope = cd.getTimescope(cd.timescope,1) #改变搜索的时间,到下一个小时 else: cd = None print '-----------------------------------------------------' print '-----------------------------------------------------' else: logger.removeHandler(filehandler) logger = None if __name__ == '__main__': main()
|